Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Discov Oncol ; 15(1): 125, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642184

RESUMO

BACKGROUND: There are a lot of studies on the treatment of tumors with hyperbaric oxygen, while most of them are in breast cancer, prostate cancer and so on. However, there are still few studies on hyperbaric oxygen in treating hepatocellular carcinoma (HCC). According to the current data, hyperbaric oxygen is an effective means to intervene in tumors. The Warburg effect is a unique marker of glucose metabolism in tumors related to hypoxia, making it possible for hyperbaric oxygen to interfere with the tumor through the Warburg effect. METHOD: We used the hypoxia/hyperbaric oxygen(HBO)-exposed HCC cells for in vitro studies. Glucose uptake, lactic acid, and adenosine triphosphate (ATP) assessed the Warburg effect. The expression of miR-103a-3p in HCC was detected by using qRT-PCR. The effect of miR-103a-3p/TRIM35 expression level on the cells was measured using the CCK8 method and flow cytometry. The molecular biological mechanism of miR-103a-3p in HCC was examined using the luciferase reporter, MS2-RIP assays. RESULT: HBO inhibited the Warburg effect in hypoxic HCC cells. HBO suppressed the expression of miR-103a-3p in hypoxic HCC cells, and miR-103a-3p inhibited the expression of TRIM35 in hypoxic HCC cells. With HBO exposure, miR-103a-3p/TRIM35 regulated the Warburg effect of hypoxic HCC cells. CONCLUSION: These findings reveal that HBO regulates the Warburg effect of hypoxic HCC cells through miR-103a-3p/TRIM35 and inhibits tumor growth.

2.
Sci Total Environ ; 926: 172071, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554960

RESUMO

Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/ß-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of ß-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on ß-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/ß-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Esgotos , Poluentes Químicos da Água/análise , Estrogênios , Arilsulfatases , Glucuronidase
3.
Neurotox Res ; 42(2): 17, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386202

RESUMO

Traumatic brain injury (TBI) is one of the important risk factors for the development of Alzheimer's disease (AD). However, the molecular mechanism by which TBI promotes the progression of AD is not elucidated. In this study, we showed that the abnormal production of E2F1 is a major factor in promoting the neuropathological and cognitive deterioration of AD post-TBI. We found that repeated mild TBI can aggravate the neuropathology of AD in APP/PS1 mice. At the same time, the co-expression of E2F1 and beta-site APP cleaving enzyme 1 (BACE1) was upregulated when the mouse hippocampus was dissected. BACE1 is recognized as a rate-limiting enzyme for the production of Aß. Here, we speculate that E2F1 may play a role in promoting BACE1 expression in AD. Therefore, we collected peripheral blood from patients with AD. Interestingly, there is a positive correlation between E2F1 and brain-derived neurotrophic factor-antisense (BDNF-AS), whereas BDNF-AS in AD can promote the expression of BACE1 and exhibit a neurotoxic effect. We established a cell model and found a regulatory relationship between E2F1 and BDNF-AS. Therefore, based on our results, we concluded that E2F1 regulates BDNF-AS, promotes the expression of BACE1, and affects the progression of AD. Furthermore, E2F1 mediates the TBI-induced neurotoxicity of AD.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Síndromes Neurotóxicas , Humanos , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Fator de Transcrição E2F1
4.
J Sci Food Agric ; 104(2): 727-736, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37658680

RESUMO

BACKGROUND: Water-free transportation (WFT), as a novel strategy for express delivery of live shrimp (Litopenaeus vannamei), was developed recently. However, air exposure during this transportation arouses a series of abiotic stress to the shrimp. In the present study, the influences of WFT stress on glycolysis and lipolysis metabolism and meat quality (umami flavor and drip loss) were investigated in comparison with conventional water transportation (WT). RESULTS: The results showed that type II muscle fibers with the feature of anaerobic metabolism were dominated in shrimp flesh. In addition, the increments of intracellular Ca2+ was detected in WFT and WT, which then activated the AMP-activated protein kinase pathway and promoted the consumption of glycogen, as well as the accumulation of lactate and lipolysis, under the enzymolysis of hexokinase, pyruvate kinase, lactate dehydrogenase and adipose triglyceride lipase. Glycogen glycolyzed to latate. Meanwhile, ATP degraded along with glycolysis resulting in the generation of ATP-related adenosine phosphates such as inosine monophosphate with umami flavor and phosphoric acid. More remarkable (P < 0.05) physiological changes (except lactate dehydrogenase and lactate) were observed in WFT compared to WT. Additionally, the fatty acid profile also slightly changed. CONCLUSION: The transport stress induced significant energy metabolism changes of shrimp flesh and therefore effected the flesh quality. The intensifications of freshness (K-value) of shrimp flesh were detected as a result of ATP degradation, which were more pronounced after WFT. However, the drip loss of shrimp flesh was more significantly increased (P < 0.05) after WFT compared to WT. © 2023 Society of Chemical Industry.


Assuntos
Proteínas Quinases Ativadas por AMP , Penaeidae , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio/metabolismo , Lactatos/metabolismo , Lactato Desidrogenases/metabolismo , Trifosfato de Adenosina , Penaeidae/metabolismo
5.
Environ Res ; 239(Pt 1): 117345, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821065

RESUMO

Owing to accelerated urbanization and industrialization, many plastic products have been manufactured and discharged into the environment, causing environmental and public health problems. Plastics in environmental media are further degraded by prolonged exposure to light, heat, mechanical friction, and other factors to form new pollutants called microplastics (MPs). Medical plastics have become a crucial source of plastics in environmental media. However, the release profiles of MPs from medical plastics and their potential ecological and health risks remain unclear. We used optical photothermal infrared spectroscopy to explore the release profiles of eight typical disposable medical devices under high-temperature steam disinfection (HSD). We also evaluated the toxicity of disposable medical devices-derived MPs in Caenorhabditis elegans (C. elegans). Our results showed that the changes in the surface morphology and modification of the disposable medical devices were mainly associated with the material. Polypropylene (PP) and polystyrene (PS) materials exhibited high aging phenomena (e.g., bumps, depressions, bulges and cracks), and HSD broke their oxygen-containing functional groups and carbon chains. By contrast, minor changes in the chemical and physical properties were observed in the polyvinyl chloride (PVC)-prepared disposable medical devices under the same conditions. Further physicochemical characterization indicated that the amount of MPs released from PP-prepared disposable medical devices (P4: 1.27 ± 0.34 × 106) was greater than that from PVC-prepared disposable medical devices (P7: 1.08 ± 0.14 × 105). The particle size of the released MPs was the opposite, PVC-prepared disposable medical devices (P7: 11.45 ± 1.79 µm) > PP-prepared disposable medical devices (P4: 7.18 ± 0.52 µm). Toxicity assessment revealed that disposable medical devices-released MPs significantly increased germ cell apoptosisin C. elegans. Moreover, MPs from PP-prepared disposable medical devices disrupted the intestinal barrier of worms, decreasing their lifespan. Our findings provided novel information regarding the profiles and mechanisms of MP release from disposable medical devices and revealed their potential risks to ecological environment.


Assuntos
Microplásticos , Plásticos , Animais , Microplásticos/toxicidade , Caenorhabditis elegans , Polipropilenos , Carbono
6.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37459185

RESUMO

Type II collagen is a homologous super-helical structure consisting of three identical α1(II) chains. It is a major component of animal cartilage, and is widely used in the food industry. Type II collagen can be extracted by acids, salts, enzymes, and via auxiliary methods and can be further hydrolyzed chemically and enzymatically to produce collagen peptides. Recent studies have shown that type II collagen and its polypeptides have good self-assembly properties and important biological activities, such as maintaining cartilage tissue integrity, inducing immune tolerance, stimulating chondrocyte growth and redifferentiation, and providing antioxidant benefits. This review focuses specifically on type II collagen and describes its structure, extraction, and purification, as well as the preparation of type II collagen peptides. In particular, the self-assembly properties and functional activities of type II collagen and collagen peptides are reviewed. In addition, recent research advances in the application of type II collagen and collagen peptides in functional foods, food additives, food coating materials, edible films, and carriers for the food industry are presented. This paper provides more detailed and comprehensive information on type II collagen and peptide for their application.

7.
Biol Res ; 56(1): 29, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270528

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked lethal genetic disorder for which there is no effective treatment. Previous studies have shown that stem cell transplantation into mdx mice can promote muscle regeneration and improve muscle function, however, the specific molecular mechanisms remain unclear. DMD suffers varying degrees of hypoxic damage during disease progression. This study aimed to investigate whether induced pluripotent stem cells (iPSCs) have protective effects against hypoxia-induced skeletal muscle injury. RESULTS: In this study, we co-cultured iPSCs with C2C12 myoblasts using a Transwell nested system and placed them in a DG250 anaerobic workstation for oxygen deprivation for 24 h. We found that iPSCs reduced the levels of lactate dehydrogenase and reactive oxygen species and downregulated the mRNA and protein levels of BAX/BCL2 and LC3II/LC3I in hypoxia-induced C2C12 myoblasts. Meanwhile, iPSCs decreased the mRNA and protein levels of atrogin-1 and MuRF-1 and increased myotube width. Furthermore, iPSCs downregulated the phosphorylation of AMPKα and ULK1 in C2C12 myotubes exposed to hypoxic damage. CONCLUSIONS: Our study showed that iPSCs enhanced the resistance of C2C12 myoblasts to hypoxia and inhibited apoptosis and autophagy in the presence of oxidative stress. Further, iPSCs improved hypoxia-induced autophagy and atrophy of C2C12 myotubes through the AMPK/ULK1 pathway. This study may provide a new theoretical basis for the treatment of muscular dystrophy in stem cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Hipóxia/metabolismo , Autofagia , RNA Mensageiro/metabolismo
8.
J Food Sci ; 88(7): 2996-3006, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306525

RESUMO

The effect of l-arginine (Arg) on the thermal stability of whey protein-corn oil emulsions was investigated to determine its role in improving emulsion stability. The results indicated that with an increase in Arg concentration, the emulsion stability index, emulsification activity index, and absolute ζ-potential increased initially and decreased after high-temperature sterilization. However, the mean particle size, apparent viscosity, creaming indices, and dynamic interfacial pressure of the emulsions first decreased and then increased, and the performance of samples that only showed an increase in pH could also improve the emulsification stability. These results clarify the mechanism by which Arg increases the thermal stability of emulsions.


Assuntos
Óleo de Milho , Água , Emulsões , Proteínas do Soro do Leite , Tamanho da Partícula , Reologia
9.
J Sci Food Agric ; 103(14): 6884-6894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37286475

RESUMO

BACKGROUND: Porcine nasal cartilage type II collagen-derived peptides (PNCPs) may be complexed with calcium to provide a highly bioavailable, low-cost, and effective calcium food supplement. However, the calcium-binding characteristics of PNCPs have not yet been investigated. In the present study, calcium-binding peptides were derived from porcine nasal cartilage type II collagen and the resulting PNCPs-Ca complex was characterized. RESULTS: The study reveals that the calcium-binding capacity of PNCPs is closely related to enzymatic hydrolysis conditions. The highest calcium-binding capacity of PNCPs was observed at a hydrolysis time of 4 h, temperature of 40 °C, enzyme dosage of 1%, and solid-to-liquid ratio of 1:10. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the PNCPs had a pronounced capacity for calcium binding, with the PNCPs-Ca complex exhibiting a clustered structure consisting of aggregated spherical particles. Fourier-transform infrared spectroscopy, fluorescence spectroscopy, X-ray diffraction, dynamic light scattering, amino acid composition, and molecular weight distribution analyses all indicated that the PNCPs and calcium complexed via the carboxyl oxygen and amino nitrogen atoms, leading to the formation of a ß-sheet structure during the chelation process. In addition, the stability of the PNCPs-Ca complex was maintained over a range of pH values consistent with those found in the human gastrointestinal tract, facilitating calcium absorption. CONCLUSION: These research findings suggest the feasibility of converting by-products from livestock processing into calcium-binding peptides, providing a scientific basis for the development of novel calcium supplements and the potential reduction of resource waste. © 2023 Society of Chemical Industry.


Assuntos
Cálcio , Cartilagens Nasais , Humanos , Animais , Suínos , Cálcio/metabolismo , Colágeno Tipo II , Cartilagens Nasais/química , Cartilagens Nasais/metabolismo , Peptídeos/química , Cálcio da Dieta/análise
10.
Water Res ; 242: 120243, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354839

RESUMO

Carbonated beverages are characterized by low temperatures, multiple microbubbles, high pressure, and an acidic environment, creating ideal conditions for releasing contaminants from plastic bottles. However, the release patterns of microplastics (MPs) and nanoplastics (NPs) are poorly understood. We investigated the effects of plastic type, CO2 filling volume, temperature, sugar content, and additive on the leakage of MPs/NPs and heavy metals. Our results showed that polypropylene bottles released greater MPs (234±9.66 particles/L) and NPs (9.21±0.73 × 107 particles/L) than polyethylene and polyethylene terephthalate bottles. However, subjecting the plastic bottles to 3 repeated inflation treatments resulted in 91.65-93.18% removal of MPs/NPs. The release of MPs/NPs increased with increasing CO2 filling volume, driven by the synergistic effect of CO2 bubbles and pressure. After 4 freeze-thaw cycles, the release of MPs and NPs significantly increased, reaching 450±38.65 MPs and 2.91±0.10 × 108 NPs per liter, respectively. The presence of sugar leads to an elevation in MPs release compared to sucrose-free carbonated water, while the addition of additives to carbonated water exhibits negligible effects on MPs release. Interestingly, actual carbonated beverages demonstrated higher MPs concentrations (260.52±27.18-281.38±61.33 particles/L) than those observed in our well-controlled experimental setup. Our study highlights the non-negligible risk of MPs/NPs in carbonated beverages at low temperatures and suggests strategies to mitigate human ingestion of MPs/NPs, such as selecting appropriate plastic materials, high-pressure carbonated water pretreatment, and minimizing freeze-thaw cycles. Our findings provide insights for further study of the release patterns of the contaminants in natural environments with bubbles, pressure, low temperature, and freeze-thaw conditions.


Assuntos
Água Carbonatada , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Dióxido de Carbono , Bebidas Gaseificadas , Temperatura Baixa , Polietileno , Açúcares
11.
J Food Sci ; 88(5): 1994-2008, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37038307

RESUMO

The endogenous components of okara can affect the extraction and modification of insoluble dietary fiber (IDF). This study was intended to investigate the effect of extraction and purification of IDFs from okara affected by the endogenous components and composite enzyme Viscozyme® L. After that, the physicochemical, functional, and structural characteristics of IDFs were analyzed. The results showed that with the purification of degreasing, deproteinizing and destarching, Viscozyme® L can accurately act on the cell wall of okara, leading to the increase in specific surface area of IDF and the formation of honeycomb-like structure. In accordance with the X-ray diffraction and Fourier-transform infrared spectrum investigations, relative crystallinity decreased and certain cellulose components were reallocated and changed into soluble dietary fiber. Moreover, the modified IDF showed improved water-holding capacity (10.73-11.59 g/g), oil-holding capacity (5.37-6.60 g/g), and swelling capacity (8.99-12.37 mL/g), leading to improved adsorption capacities of glucose (maximum: 39.60 mg/g), cholesterol (14.54-33.56 mg/g at pH 7; 10.94-19.37 mg/g at pH 2), and cholate and better cation-exchange capacity. The outcomes demonstrated the potential for the acquired IDFs, particularly the high-purity modified-IDFs T3 and T4 , to be exploited as functional fiber components in the food sector. PRACTICAL APPLICATION: This study advances the understanding of the internal mechanism of modified insoluble dietary fiber (IDF) with different purities in okara. The obtained high-purity modified IDF can be employed as a functional fiber raw material in the manufacture of functional foods, and can also be utilized to assist in the treatment of some illnesses due to its well-established in vivo function.


Assuntos
Carboidratos , Fibras na Dieta , Fibras na Dieta/metabolismo , Celulose , Glucose/metabolismo , Colesterol/química
12.
Fitoterapia ; 166: 105470, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36914012

RESUMO

Medicinal fungi are beneficial to human health and it reduces the risk of chronic diseases. Triterpenoids are polycyclic compounds derived from the straight-chain hydrocarbon squalene, which are widely distributed in medicinal fungi. Triterpenoids from medicinal fungal sources possess diverse bioactive activities such as anti-cancer, immunomodulatory, anti-inflammatory, anti-obesity. This review article describes the structure, fermentation production, biological activities, and application of triterpenoids from the medicinal fungi including Ganoderma lucidum, Poria cocos, Antrodia camphorata, Inonotus obliquus, Phellinus linteus, Pleurotus ostreatus, and Laetiporus sulphureus. Besides, the research perspectives of triterpenoids from medicinal fungi are also proposed. This paper provides useful guidance and reference for further research on medicinal fungi triterpenoids.


Assuntos
Triterpenos , Humanos , Triterpenos/farmacologia , Fermentação , Estrutura Molecular
13.
Compr Rev Food Sci Food Saf ; 22(3): 1986-2016, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939688

RESUMO

Recently, increasing studies have shown that the functional properties of proteins, including emulsifying properties, antioxidant properties, solubility, and thermal stability, can be improved through glycation reaction under controlled reaction conditions. The use of glycated proteins to stabilize hydrophobic active substances and to explore the gastrointestinal fate of the stabilized hydrophobic substances has also become the hot spot. Therefore, in this review, the effects of glycation on the structure and function of food proteins and the physical stability and oxidative stability of protein-stabilized oil/water emulsions were comprehensively summarized and discussed. Also, this review sheds lights on the in vitro digestion characteristics and edible safety of emulsion stabilized by glycated protein. It can further serve as a research basis for understanding the role of structural features in the emulsification and stabilization of glycated proteins, as well as their utilization as emulsifiers in the food industry.


Assuntos
Emulsificantes , Reação de Maillard , Emulsões/química , Emulsificantes/química , Proteínas , Antioxidantes
14.
J Agric Food Chem ; 71(8): 3599-3619, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802555

RESUMO

The prevalence of neurodegenerative, cerebrovascular, and psychiatric diseases and other neurological disorders has increased dramatically worldwide. Fucoxanthin is an algal pigment with many biological functions, and there is rising evidence that fucoxanthin plays a preventive and therapeutic role in neurological disorders. This review focuses on the metabolism, bioavailability, and blood-brain barrier penetration of fucoxanthin. Furthermore, the neuroprotective potential of fucoxanthin in neurodegenerative diseases, cerebrovascular diseases, and psychiatric diseases as well as other neurological disorders such as epilepsy, neuropathic pain, and brain tumors by acting on multiple targets will be summarized. The multiple targets include regulating apoptosis, reducing oxidative stress, activating the autophagy pathway, inhibiting Aß aggregation, improving dopamine secretion, reducing α-synuclein aggregation, attenuating neuroinflammation, modulating gut microbiota, and activating brain-derived neurotrophic factor, etc. Additionally, we look forward to brain-targeted oral transport systems due to the low bioavailability and blood-brain barrier permeability of fucoxanthin. We also propose exploring the systemic mechanisms of fucoxanthin metabolism and transport through the gut-brain process and envision new therapeutic targets for fucoxanthin to act on the central nervous system. Finally, we propose dietary fucoxanthin delivery interventions to achieve preventive effects on neurological disorders. This review provides a reference for the application of fucoxanthin in the neural field.


Assuntos
Doenças Neurodegenerativas , Xantofilas , Humanos , Apoptose , Encéfalo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Xantofilas/uso terapêutico , Xantofilas/farmacologia , Alimentos
15.
Food Res Int ; 164: 112368, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737955

RESUMO

Whey protein hydrolysate (WPH), maltodextrin (MD), low methoxy pectin (LMP) and high methoxy pectin (HMP) were used to study the interface binding under high temperature sterilization conditions (121 °C, 15 min). The effect of competitive binding of MD and pectin with interface protein on the storage stability and gastrointestinal fate of fish oil emulsion was studied. The low-molecular-weight MD and the interface protein undergo a wide range of covalent binding through the Maillard reaction, while a small amount of high-molecular-weight pectin can form a protective shell with the interface protein through electrostatic interaction to inhibit the covalent reaction of MD, which was called competitive binding. However, due to the bridging and depletion flocculation of pectin, the emulsification stability of fish oil emulsion reduced. After 13 days of storage, compared with the particle size of the WPH fish oil emulsion (459.18 nm), the fish oil emulsion added with LMP and HMP reached 693.58 nm and 838.54 nm, respectively. In vitro digestion proved that WPH fish oil emulsion flocculated rapidly in the stomach (1.76 µm), while WPH-MD and WPH-MD-pectin fish oil emulsions flocculated slightly (less than800 nm). WPH-MD-pectin delayed digestion in the gastrointestinal tract, and HMP exhibited a better slow-release effect. This study provides reference for the design of multi-component functional drinks and other bioactive ingredient delivery system.


Assuntos
Óleos de Peixe , Pectinas , Emulsões/metabolismo , Proteínas do Soro do Leite , Temperatura , Ligação Competitiva , Digestão
16.
Food Chem ; 408: 135147, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527918

RESUMO

Generally, whey protein concentrate (WPC) undergoes high-temperature denaturation and aggregation, which reduces its emulsifying properties and is not conducive to as an emulsifier to maintain the thermal stability of emulsions. In this study, dynamic high-pressure microfluidization technology (DHPM) combined with TGase (TG) cross-linking was applied to prepare DHPM-TG-WPC, and the thermal stabilization mechanism of nanoemulsions prepared with DHPM-TG-WPC was explored. Results showed DHPM treatment could promote the formation of TG-crosslinked WPC polymers. Compared to WPC, the free sulfhydryl and free amino group content of DHPM-TG-WPC was significantly decreased (P < 0.05), the surface hydrophobicity and interfacial tension of DHPM-TG-WPC were increased by 45.23 % and 62.34 %, respectively. And its emulsifying stability index and interface protein adsorption was significantly enhanced (P < 0.05). Furthermore, compared to WPC, DHPM-WPC and TG-WPC, DHPM-TG-WPC-stabilized nanoemulsions showed the best 15 days of storage stability after thermal sterilization. This study provides a theoretical basis for the application of modified-WPC emulsion.


Assuntos
Emulsificantes , Transglutaminases , Proteínas do Soro do Leite/química , Emulsões/química , Emulsificantes/química , Água
17.
Biol. Res ; 56: 29-29, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1513741

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked lethal genetic disorder for which there is no effective treatment. Previous studies have shown that stem cell transplantation into mdx mice can promote muscle regeneration and improve muscle function, however, the specific molecular mechanisms remain unclear. DMD suffers varying degrees of hypoxic damage during disease progression. This study aimed to investigate whether induced pluripotent stem cells (iPSCs) have protective effects against hypoxia-induced skeletal muscle injury. RESULTS: In this study, we co-cultured iPSCs with C2C12 myoblasts using a Transwell nested system and placed them in a DG250 anaerobic workstation for oxygen deprivation for 24 h. We found that iPSCs reduced the levels of lactate dehydrogenase and reactive oxygen species and downregulated the mRNA and protein levels of BAX/BCL2 and LC3II/ LC3I in hypoxia-induced C2C12 myoblasts. Meanwhile, iPSCs decreased the mRNA and protein levels of atrogin-1 and MuRF-1 and increased myotube width. Furthermore, iPSCs downregulated the phosphorylation of AMPKA and ULK1 in C2C12 myotubes exposed to hypoxic damage. CONCLUSIONS: Our study showed that iPSCs enhanced the resistance of C2C12 myoblasts to hypoxia and inhibited apoptosis and autophagy in the presence of oxidative stress. Further, iPSCs improved hypoxia-induced autophagy and atrophy of C2C12 myotubes through the AMPK/ULK1 pathway. This study may provide a new theoretical basis for the treatment of muscular dystrophy in stem cells.


Assuntos
Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco Pluripotentes Induzidas , Atrofia/metabolismo , Atrofia/patologia , Autofagia , RNA Mensageiro/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Hipóxia/metabolismo
18.
Front Microbiol ; 13: 979388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406445

RESUMO

Malondialdehyde (MDA) is one of the most representative reactive carbonyl species (RCSs) produced by lipid oxidation in food. However, the inhibitory effect of MDA on microorganisms has received little attention. Thus, the aim of this study was to reveal the antibacterial mechanism of MDA on Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from dry-cured fish. The results showed that the minimum inhibitory concentrations (MICs) of MDA on S. xylosus and L. plantarum were 90 µg/ml and 180 µg/ml, respectively. Time-kill curves indicated a concentration-dependent antibacterial activity of MDA. Moreover, cell wall damage, cell membrane depolarization, intracellular adenosine triphosphate (ATP) decline, Ca2+ and Mg2+ leakage, cell morphological destruction and alterations in intracellular biomolecules were observed, which indicated the negative influence of MDA on cell membrane and cellular homeostasis. This study demonstrated the potential antimicrobial properties of MDA and provided theoretical support for the scientific prevention and control of lipid oxidation and microbial contamination in food. This study demonstrated the potential antibacterial properties of MDA and further enriches theoretical studies on the effects of lipid oxidation on microorganisms.

19.
Dis Markers ; 2022: 8928282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438902

RESUMO

Long noncoding RNAs (lncRNAs) are revealed to be involved in the tumorigenesis and progression of human malignancies mediated by microRNA (miRNA) via the competing endogenous RNA (ceRNA) mechanism, a newly proposed "RNA language." However, the lncRNA-associated competing triplet (lncACT) network among ceRNA transcripts in clear cell renal cell carcinoma (ccRCC) is currently lacking. We carried out differential expression analysis to identify aberrantly expressed lncRNAs, miRNAs, and mRNAs by analyzing the RNA-seq data of 420 ccRCC tissues and 71 noncancerous kidney tissues obtained from The Cancer Genome Atlas (TCGA). Then, a ccRCC-specific ceRNA network was built using computational algorithms, including miRcode, TargetScan, miRanda, and miRTarBase. In total, 1491 dysregulated lncRNAs were found between normal renal tissues and ccRCC (fold change > 4 and false discovery rate < 0.01). A ceRNA network that comprised of 46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs was established by integrating the lncRNA/miRNA and miRNA/mRNA interactions into lncACTs. Several lncRNAs were identified to be significantly associated with clinical features of ccRCC patients. Notably, four key lncRNAs (TCL6, HOTTIP, HULC, and PCGEM1) were tightly correlated with both patients' clinical characteristics and overall survival (log-rank P < 0.05), indicating their potential important roles in ccRCC. HOTTIP may be a potential prognostic and therapeutic molecular marker for ccRCC patients. Collectively, our results provide a comprehensive view of the lncRNA-associated ceRNA regulatory network for a better understanding of the mechanisms and prognosis biomarkers for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
20.
BMC Pulm Med ; 22(1): 414, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369030

RESUMO

BACKGROUND: Acute liver injury (ALI) induced by sepsis seriously endangers the health of human beings every year. Mesenchymal stem cells (MSCs) lysate containing various regulators had a positive effect on anti-inflammation, hoping to provide a promising strategy in ALI. METHODS: Olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) were extracted and identified. The collected OM-MSCs were prepared after repeated freeze-thaw in phosphate buffer solution (PBS). Then, OM-MSCs lysate was filtered for future experiments. To understand the composes of OM-MSCs clearly, we detected the components of OM-MSCs lysate by western blotting. In vitro, OM-MSCs lysate was applied to evaluate the effects on normal human liver cells (LO-2) under stimulation of LPS. Lipopolysaccharide (LPS) was also injected intraperitoneally to build ALI model in mice. We further assessed the anti-inflammatory capacity of OM-MSCs lysate on ALI in vivo by aminotransferase determination, pathology observation, and immunohistochemical staining. Moreover, the immunoblot technique was performed to recognize the changes in inflammatory factors and related proteins. RESULTS: In this study, we found that OM-MSCs lysate could protect structure effectively, improve the plasma aminotransferases, diminish inflammation by releasing interleukin-10 (IL-10) and transforming growth factor-beta (TGF-ß). A significant decrease in tumor necrosis factor-α (TNF-α) also occurred under the treatment of OM-MSCs lysate. In addition, trophic factors originating from OM-MSCs lysate provided a supportive micro-environment for liver recovery. Especially, up-expression of vascular endothelial growth factor (VEGF) in vivo revealed that OM-MSCs might have a great potential for healing. CONCLUSIONS: Our results demonstrated that OM-MSCs lysate could alleviate LPS-induced ALI via decreasing inflammatory cytokines and promoting recovery.


Assuntos
Lipopolissacarídeos , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Lipopolissacarídeos/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Anti-Inflamatórios/farmacologia , Fígado , Mucosa Olfatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA